

Infection • Antimicrobiens • Modélisation • Evolution

Doors opening and infectious risk in clean surgery:

A Prospective, Cross-sectional Study

<u>G. Birgand</u>, C. Azevedo, R. Pissard-Gibollet, G. Toupet, S. Rukly, G. Antoniotti, M.N. Deschamps, D. Lepelletier, C. Pornet, J.B. Stern, Y.M. Vandamme, N. Van der Mée – Maquet,

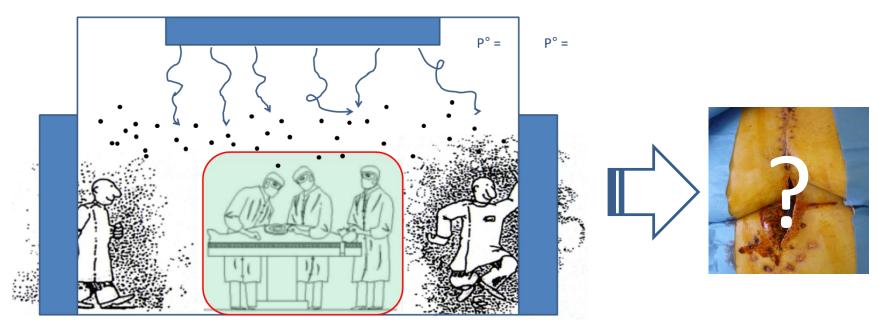
J.F. Timsit, J.C. Lucet

Disclosure statement

- Financial support: none
- Conflict of interest:
 - Pfizer: Travel grant for the ICAAC 2011

Introduction

Current knowledge


- Behaviour in OR and infectious risk
 - Literature suggesting impact of team behaviour on the SSI risk
 - Low level of evidence: monocentric & methodological issues
 - Heterogeneous: outcomes and endpoints

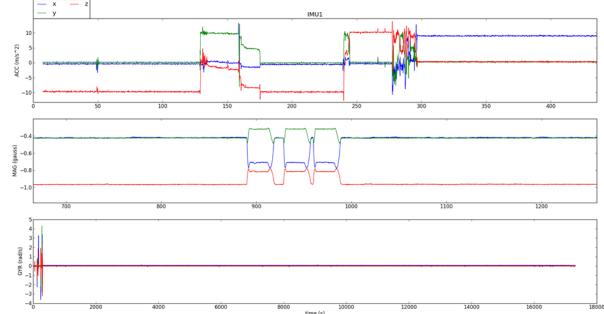
Birgand et al, ICHE 2015

- Guidelines based on expert advices
 - SF2H 2004 (FR): "... restriction of the number of persons and movements in the operating room..."
 - NICE 2010 (UK): "Staff ... should keep their movements in and out of the operating area to a minimum."
 - CDC 1999 (US): keeping OR doors closed (grade IA) and allowing only necessary personnel into the OR (grade II).

Objectives

- 1. To describe and assess the staff behaviour in the OR and its variability
- 2. To correlate the staff behaviour with the SSI risk, approached with surrogates of SSI

Methods


- Observational multicentre study in France
 - -10 hospitals & 13 operating theatres
- 2 surgical specialities
 - Reproducible + cutaneous approach
 - -TKR/THR, median sternotomy
- Data collection tool
 - Objectively measure the movements & interactions of surgical teams: « video tracking »

Methods Doors

- Autonomous inertial sensors fixed on each door
 - Records of door openings and movements

Methods

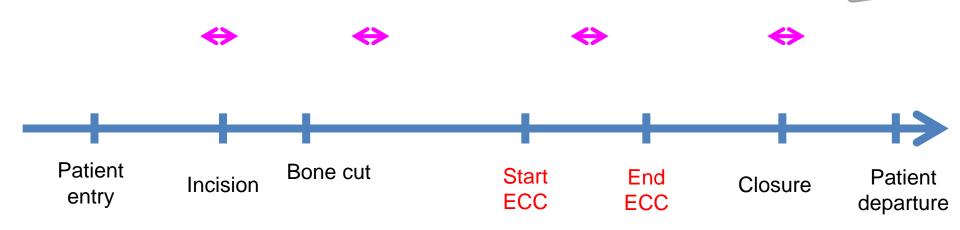
Reflective markers

- Reflective markers distinguishing professionnal categories
 - Surgeons/OR nurses/Anaesthetic team/Others
 - Number of persons and their movements

Surrogates of Infectious Risk

Particle counts

- Photodetection device (HandiLaz Mini) 1 minute every 3 minutes
- 3 sizes of paticles: 0.3, 0.5, and 5 μm
- Mean of particle counts log₁₀ transformed



Particle count 0,3; 0,5; 5 µm (1 min x 3min) Patient entry Incision Bone cut Start End ECC ECC Closure Patient departure

Surrogates of Infectious Risk

Microbiological air counts

- Impactor air sampler (Air-test Omega), 100 L/min for 5 minutes (500 L)
- Trypticase soy agar incubated for 4 days at 30°C

AIRIDEAL

Surrogates of Infectious Risk

Wound sampling

- Sterile pads 7x2 cm before closure
- 1 to 2 min on a surface area of 84 cm²

Results Overall data

Orthopaedic surgery

6 Operating rooms (4 Univ)

- 4 with laminar air flow
- Median Nbr of doors: 2 (1-4)
 - 2 OR with a single door

35 procedures

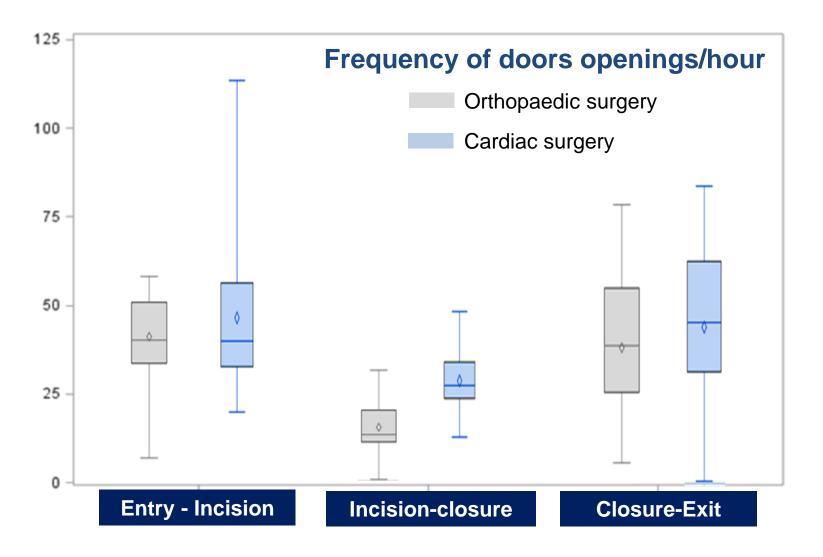
- 18 Total Hip replacements
- 17 Total Knee replacements
- Median duration [IQR]
 - Patient entry-exit: 2.5 h[2 3.1]
 - Incision Closure: 1h [1.3 1.5]

Results Overall data

Orthopaedic surgery

6 Operating rooms (4 Univ)

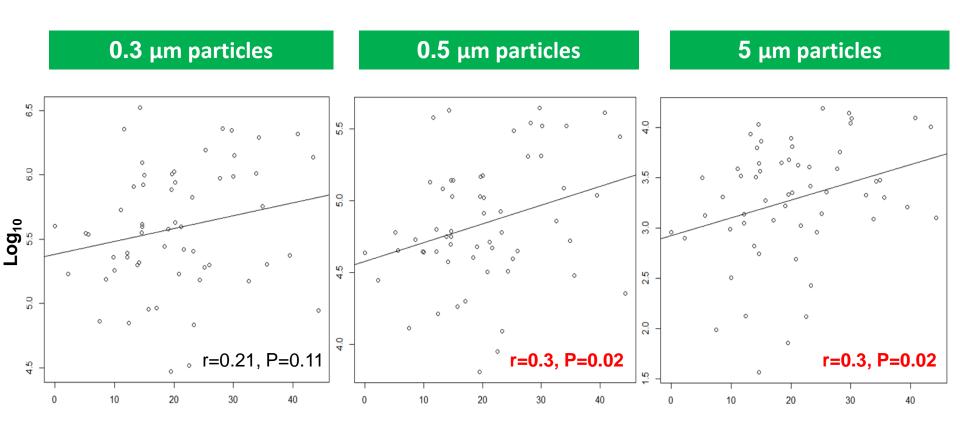
- 4 with laminar air flow
- Median Nbr of doors: 2 (1-4)
 - 2 OR with a single door


35 procedures

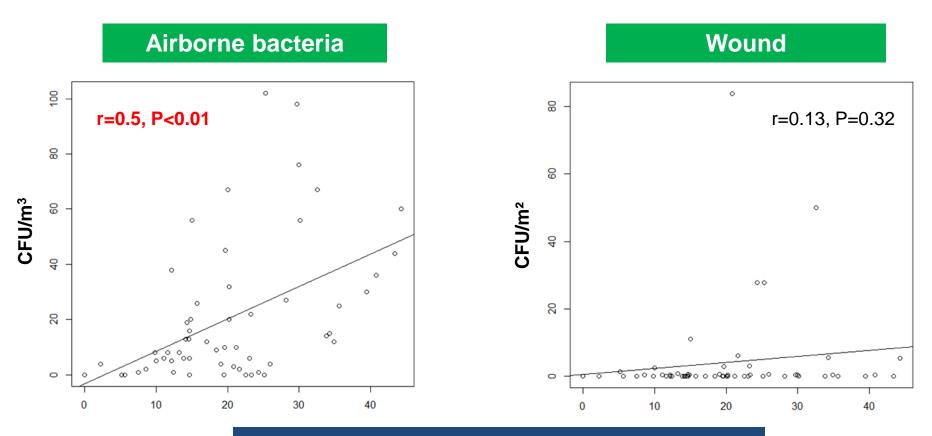
- 18 Total Hip replacements
- 17 Total Knee replacements
- Median duration [IQR]
 - Patient entry-exit: 2.5 h[2 3.1]
 - Incision Closure: 1h [1.3 1.5]

Cardiac surgery

- 7 Operating rooms (2 Univ)
 - 1 with laminar air flow
 - Median Nbr of doors: 2 (1-5)
 - 2 OR with a single door
- 25 procedures
 - 12 CABG
 - 6 Valve repl. & 7 CABG + Valve
- Median duration [IQR]
 - Patient entry-exit: 5 h [4.7 6.2]
 - Incision Closure: 3.5 h [3-4.3]


Door openings data

Door openings data


From incision - closure	Orthopaedic surgery	Cardiac surgery
Mean number of doors openings / person		
Surgeons	4.4 (2.5)	5 [4 - 8]
OR nurses	8.3 (7)	16 [8 - 28]
Anaesthetic team	6.3 (5)	18 [13 - 22]
Others	7.5 (5.2)	17 [10 - 24]
Mean duration of doors opening (Min)		
University hospital	29.2 (18)	10.1 (23) P=0.03
Private hospital	13.2 (5)	6.4 (3.7)
Mean frequency of openings / h		
Materials store room	16.7 (6.2)	9.2 (2.6)
Decontamination room	0 (0)	0.8 (1.0)
Surgical team aseptic preparation	10.9 (8)	22 (9.8)
Pre-operative patient preparation	3.5 (5.9)	5.3 (3.8)

Door openings frequency - particle counts

Frequency of doors openings (per h)

Door openings frequency - microbiology

Frequency of doors openings (per h)

Discussion

- Behavioural aspects are critical for the control of the exogenous risk of SSI
- Door openings affect air contamination
 Jeopardizing operating room sterility
- Large heterogeneity of doors openings
 - Between types of interventions, ORs and hospitals
 - Partly preventable: ~ 50%, providing large room for improvement

Discussion

Strengths

- Wide data collection of movements during +60 procedures
- Multicenter study in different ORs/ clean surgical specialties
- Original approach using high technology tools

Limitations

- Endpoint: surrogates of environmental infectious risk, not SSI
- Hawthorne effect: data will allow the assessment
- Reasons of doors openings not collected

Perspectives

- Enlargement of the analysis
 - Movements of persons in the OR with multiple adjustments
 - Safety climate and infectious risk questionnaires
- Better understanding of behaviours to shape interventions
 - Qualitative assessment of surgical professionals perception
- Improving organisation, communication, anticipation
 - Increase the awareness
 - Improve behaviours by monitoring, goal setting, leadership, ergonomics

Acknowledgements

- Engineering:
 - C. Azevedo, R. Pissard-Gibollet, E. Fleury
- Statistics:
 - S Rukly, JF Timsit
- Participating centers:
 - G. Antoniotti,
 - M.N. Deschamps,
 - D. Lepelletier,
 - C. Pornet,
 - J.B. Stern,
 - Y.M. Vandamme,
 - N. Van der Mée Maquet,

Infection • Antimicrobiens • Modélisation • Evolution

Thank you for your attention Twitter: @Gbirgand Blog: http://www.gabrielbirgand.fr/